
 notes.superlogical.ch

Home. Pages. Posts.

There is no Layer2 option in WireGuard

Last update: 07.06.2020 21:20

As stated in the first sentence of “WireGuard: NextGeneration Kernel Network Tunnel”

[1]

WireGuard is a secure network tunnel, operating at layer 3, implemented...

All questions on StackExchange regarding WireGuard and bridging, broadcast traffic

are answered pretty quickly: “It’s layer 3”. Period… Except maybe in the future

multicast and IPv6 link local addresses, eventually.

Over the past years, I migrated lots of VPNs to WireGuard. Since it has found its way

into the Linux Kernel (Premier Commit) it has become my first option to choose, when

it comes to VPN.

Now in 99.5% of the cases, implementing VPN at layer 3 is the required solution. In

.5% there is no way around at least a bit layer 2. Thinking of OpenVPN TAP interfaces

I was looking for a way to close the gap. A good friend of mine, @kpanic, a pretty

busy guy in the Freifunk FF3L Community gave me a good hint: “Ever thought about

GRETAP?”.

GRE stands for Generic Routing Encapsulation and is defined in RFC 2784. GRE

interfaces operate on layer 3. In Linux there is a thing called “gretap”. It’s a GRE

tunnel based TAP interface. And because it is a TAP, it simulates a link layer device

and therefore carrying Ethernet frames. I’ve not found good documentation about, but

in the kernel source.

Compared to GRE, in GRETAP there is a “Inner Ethernet Header”. Keep in mind, this all

adds up on our network overhead.

The case

Two sites, both with a private //24 IPv4 network, both Debian 10 boxes, installed on

a APU2 based router with three gigabit ethernet NICs installed.

https://notes.superlogical.ch/
https://notes.superlogical.ch/
https://notes.superlogical.ch/pages/
https://notes.superlogical.ch/posts/
https://lists.zx2c4.com/pipermail/wireguard/2017-April/001177.html
https://github.com/torvalds/linux/commit/bd2463ac7d7ec51d432f23bf0e893fb371a908cd
https://twitter.com/kpanic
https://freifunk-3laendereck.net/
https://tools.ietf.org/html/rfc2784
https://github.com/torvalds/linux/blob/cb8e59cc87201af93dfbb6c3dccc8fcad72a09c2/net/ipv4/ip_gre.c#L1591
https://pcengines.ch/apu2.htm

The plan is, that the third NIC (enp3s0) on router A gets bridged transparently to

enp2s0 on router B. Giving anything plugged to enp3s0 on router A the full Layer 2

experience as directly connected to the Switch on Site B

On both sites: A WAN/Cable modem on enp1s0, network devices firewalled, behind a

switch on enp2s0. Let’s call them Router A & B / Site A & B.\

Site Network A: 192.168.178.0/24

Site Network B: 192.168.92.0/24

WireGuard Config on Router A

[Interface]

PrivateKey = PrivateKeyRouterA

Address = 10.15.14.2/24

[Peer]

PublicKey = PublicKeyRouterB

AllowedIPs = 192.168.92.0/24,10.15.14.0/24

Endpoint = MyRemoteServer.com:4900

PersistentKeepalive = 15

WireguardConfig on Router B

[Interface]

Address = 10.15.14.1/24

ListenPort = 4900

PrivateKey = PrivatekeyRouterB

[Peer]

APU2(Static Route)

PublicKey = PublicKeyRouterA

AllowedIPs = 10.15.14.2/32,192.168.178.0/24

How I think it could be solved

There are some prerequisites to be in place to make the bridge setup work

Ensured, IPv6 forwarding is enabled on both sites (This should be given on a router)

-> # cat /etc/sysctl.conf | grep net.ipv4.ip_forw

net.ipv4.ip_forward=1

bridge-utils installed on both sites

-> # apt install bridge-utils

MSS clamping on both sides in FORWARD (This is the quick** method of getting MSS

right)

-> # iptables -A FORWARD -p tcp --tcp-flags SYN,RST SYN -j TCPMSS --clamp-mss-to-pmtu;

and br_netfilter gets loaded on boot. If not, your iptables forward rules will not

work for the resulting bridge.

-> # cat /etc/modules-load.d/brnetfilter.conf

br_netfilter

Time to create a bridge interface on both sides.

Router A: In /etc/network/interfaces we create a bridge and connect enp3s0 to it.

There is no IP configuration on enp3s0 nor on the bridge.

allow-hotplug enp3s0

iface enp3s0 inet manual

auto br0

Bridge setup

iface br0 inet manual

 bridge_ports enp3s0

Router B: In /etc/network/interfaces we create a bridge and connect enp2s0 to it on

boot. The bridge is configured to static internal network 192.168.92.1/24 IP on

enp2s0 the address set to manual with no address

allow-hotplug enp2s0

iface enp2s0 inet manual

auto br0

iface br0 inet static

 address 192.168.92.1

 netmask 255.255.255.0

 bridge_ports enp2s0

Append PostUp & Down scripts on wg0.conf at Router A

[Interface]

PrivateKey = PrivateKeyRouterA

Address = 10.15.14.2/24

PostUp = ip link add name gretap1 type gretap local 192.168.178.1 remote 192.168.92.1

PostUp = ip link set gretap1 up

PostUp = ip link set gretap1 master br0

PostDown = ip link del gretap1

[Peer]

SiteB (Static Route)

PublicKey = PublicKeyRouterB

AllowedIPs = 192.168.92.0/24,10.15.14.0/24

Endpoint = MyRemoteServer.com:4900

PersistentKeepalive = 15

Append PostUp & Down scripts on wg0.conf at Router B

[Interface]

Address = 10.15.14.1/24

ListenPort = 4900

PrivateKey = PrivatekeyRouterB

PostUp = ip link add name gretap1 type gretap local 192.168.92.1 remote 192.168.178.1

PostUp = ip link set gretap1 up

PostUp = ip link set gretap1 master br0

PostDown = ip link del gretap1

[Peer]

SiteA (Static Route)

PublicKey = PublicKeyRouterA

AllowedIPs = 10.15.14.2/32,192.168.178.0/24

Sources

Title image: https://www.wireguard.com/img/wireguard.svg

[1]Paper “WireGuard: NextGeneration Kernel Network Tunnel” Jason A. Donenfeld,

https://www.wireguard.com/papers/wireguard.pdf

© 2025 notes.superlogical.ch. Github. GitLab. Twitter. Impressum &

Datenschutzerklärung.

https://www.wireguard.com/img/wireguard.svg
https://www.wireguard.com/papers/wireguard.pdf
https://www.wireguard.com/papers/wireguard.pdf
https://notes.superlogical.ch/
https://github.com/hb9fxq
https://gitlab.com/hb9fxq
https://twitter.com/hb9fxq
https://notes.superlogical.ch/staticp/impressum/
https://notes.superlogical.ch/staticp/impressum/

